

DETECTING HEALTH OUTCOMES FROM MEDICAL TEXT RECORDS

Micheal Abaho, Danushka Bolleagala, Paula R Williamson & Susanna Dodd

INTRODUCTION

An Outcome is a measurement or an observaas those underlined and in bold font.

OD has however previously been hindered by an abscence of a consensus on how outcomes should be reported and classified. Moreover, datasets like EBM-NLP [2] supporting OD have been found erroneous [3] with flaws like,

- Flaw 1: Inclusion of unnecessary text.
 - Clinical measurement tools e.g. "Quality of life Questionnaire".
- granular outcomes.
- "Suicidal Ideations" annotated as a Mortality outcome rather than Mental outcome.

CORRECTING FLAWED OUTCOME ANNOTATIONS

Rule based syntactic chunking will eliminate un-necessary text including metrics, contextually comperative POS, punctuations

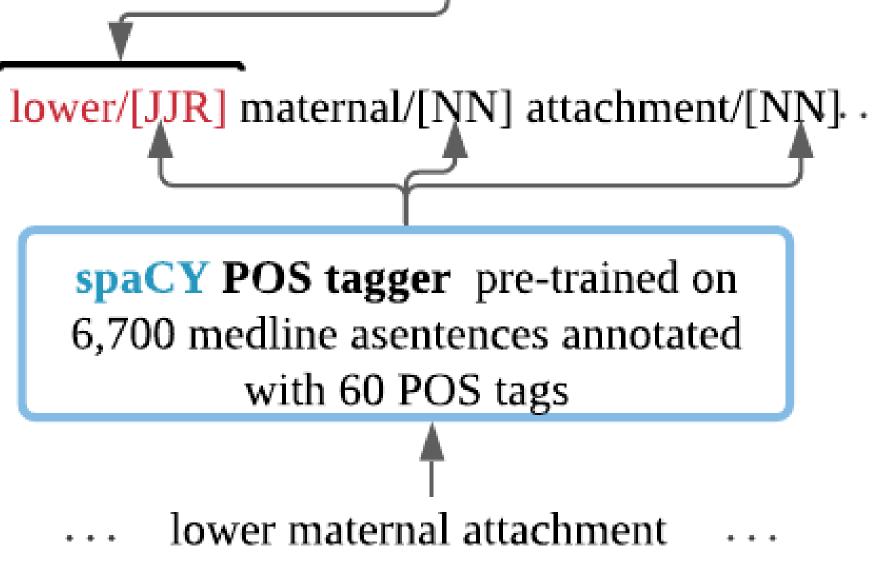


Figure 1: Part-Of-Speech (POS) Tagging and Rule-based Chunking to build EBM-NLP_{rev}

Model	EBM-NLP	EBM - NLP_{rev}
biLSTM	72.2	80.3
biLSTM - Flaw 2	_	74.3

Table 1: F1 (%) for OD on original and revised version of EBM-NLP, including when only Flaw 2 is corrected.

Given a sentence $s = \{w_i\}_{i=1}^M$, OSD identifies an outcome span $o_d = \{b_i\}_{i>1}^N$, and OC predicts an outcome type $t(o_d) \in \mathcal{Y}$ for o_d , where, $N \leq M$

Label representations at

B-o I-o

$$\boldsymbol{h}_{n}^{c} = \text{BioBERT}(w_{n}) + \frac{1}{|a|} \sum_{n=1}^{|a|} (\text{BioBERT}(w_{n}))$$
 (2)

Label-word attention representation (OSD)

$$\boldsymbol{A}_{n}^{(1)} = \operatorname{softmax}(\mathbf{W} \tanh(\mathbf{V}\boldsymbol{h}_{n})) \& \boldsymbol{A}_{n}^{(2)} = \mathbf{U}\boldsymbol{h}_{n}$$
 (2)

$$\boldsymbol{E}^{t_l} = \boldsymbol{A}^{(1)} \boldsymbol{h}_n^{\top} + A^{(2)} \boldsymbol{h}_n^{\top}$$
 (3)

$$L_{osd} = -\sum_{n=1}^{N} \sum_{i=1}^{|l_w|} y_{n,i} \log(\hat{y}_{n,i}).$$
 (4)

Label-word attention representation (OC)

$$L_{oc} = -\sum_{i=1}^{|L_s|} y_i \log(\hat{y_i}) + (1 - y_i) \log(1 - \hat{y_i})$$
 (5)

Combined
$$lossL = L_{osd} + L_{oc}$$
 (6

Model	OSD	OC
LCAM	68.0	83.0
LCAM - Abstract	65.0	78.0
LCAM - Attention	58.0	71.0

Table 3: OSD and OC performance F1 (%) on EBM-

OSD & OC

$$\boldsymbol{h}_{n}^{c} = \text{BioBERT}(w_{n}) + \frac{1}{|a|} \sum_{n=1}^{|a|} (\text{BioBERT}(w_{n}))$$
 (1)

$$\mathbf{A}_n^{(1)} = \operatorname{softmax}(\mathbf{W} \tanh(\mathbf{V} \mathbf{h}_n)) \& \mathbf{A}_n^{(2)} = \mathbf{U} \mathbf{h}_n$$
 (2)

$$\boldsymbol{E}^{t_l} = \boldsymbol{A}^{(1)} \boldsymbol{h}_n^{\top} + A^{(2)} \boldsymbol{h}_n^{\top} \quad ($$

JOINT OUTCOME SPAN DETECTION (OSD) & OUTCOME CLASSIFICATION (OC)

COMET

LABEL-ALIGNMENT FOR DATA AUGMENATION

Resource-use

Algorithm 1 Label Alignment

l: **Input:** comparable datasets S & T

2: **for** each label l in S:

 h_{n-2}

Label-word Attention

 h_{n-3}

Text Encoder

Figure 2: Label-word context aware attention framework (LCAM) for joint OSD and OC [9]

3: Create an **embedding** l_s by $l_s = \frac{1}{|l_s|} \sum_{i=1}^{|l_s|} O_{l_s}$

where $oldsymbol{O}_{l_s} = rac{1}{d} \sum_i^{i+(d-1)} extbf{BioBERT}(w_i)$

and i & i + (d-1) are the first and last words

of an outcome span labelled l_s i.e. O_{l_s}

for each label l in \mathcal{T}

Compute cosine_similarity (cos) of $l_s \& l_t$

Reannotate l_t outcomes with most similar l_s .

REFERENCES

- Williamson et al. Comet handbook: version 1.0. 2017.
- [2] Nye et al. EBM-NLP corpus. ACL, 2018.
- [3] Abaho et al. Correcting crowdsourced outcome annotations. In CEUR Workshop Proceedings, 2019.
- [4] Lee et al. Biobert. Bioinformatics, 36(4):1234–1240, 2020.
- [5] Jin et al. Probing biomedical embeddings. NAACL, 2019.
- [6] Beltagy et al. Scibert. EMNLP, 2019.
- [7] Alsentzer et al. Clinicalbert. NAACL, June 2019.
- [8] Sharma and Daniel. Bioflair. arXiv:1908.05760, 2019.
- [9] Abaho et al. Joint span detection and classification for health outcomes. arXiv preprint arXiv:2104.07789, 2021.
- Abaho et al. Assessment of contextualised representations in outcome detection. Manuscript under review, 2021.

tion used to capture and assess the effect of a treatment [1]. Automating Outcome Detection (OD) could speed up access to evidence necessary in health care decision making. Given a sentence, "There was no significance between group difference in the incidence of wheezing or shortness of breath", OD extracts outcomes such

- statistical metrics e.g. "mean arterial pressure".
- Flaw 2: Failure to identify independent and
- e.g. "cardiac arrest and heart failure"
- Flaw 3: Imprecise outcome annotations.

EBM-COMET (ANNOTATION & EVALUATION)

Annotation category	Annotated text
Simple	Tai Chi may alleviate <p 0,="" 28="">depression through modulating autonomous nervous system or <p 0="">heart rate variability /></p></p>
	depression - [0:Physiological, 28:Emotional Functioning] heart rate variability - [Physiological]
Complex	The objective of this study was to evaluate < P 0 >(S2)right heart size < P 0 >and functionechocardiography during long term treatment
	right heart size - [0:Physiological] right heart function - [0:Physiological]

Data set statistics: 300 RCT PubMed Abstracts, 5193 sentences, an average of 0-4 outcome = phrases/sentence.

Full Outcome phrase detection

Ground truth:- Systolic blood pressure Predicted:- Systolic blood pressure

66.7 80.2 Traditional NER evaluation:-Full outcome phrase evaluation:- 0

Model	EBM-NLP _{rev}	EBM-COMET
BioBERT [4]	53.1	81.3
BioELMo [5]	52.0	75.0
SciBERT [6]	52.8	77.6
ClinicalBERT [7]	51.0	68.5
BioFLAIR [8]	51.4	68.5

Table 2: F1 (%) for OD using in-domain CLMs